
Abstract. The Kekulé structure count and the permanent
of the adjacency matrix of fullerenes are related to
structural parameters involving the presence of contig-
uous pentagons p, q, r, q/p and r/p, where p is the
number of edges common to two pentagons, q is the
number of vertices common to three pentagons and r is
the number of pairs of nonadjacent pentagons adjacent
to another common pentagon. The cluster analysis of
the structural parameters allows classification these
parameters. Principal component analysis (PCA) of the
structural parameters and the cluster analyses of the
fullerenes permit their classification. PCA clearly dis-
tinguishes five classes of fullerenes. The cluster analysis
of fullerenes is in agreement with PCA classification.
Cluster analysis shows greatest similarity for the q)q/p
and r–r/p pairs. PCA provides five orthogonal factors
F1)F5. The use of F1 gives an error of 28%. The inclu-
sion of F2 decreases the error to 2%.

Keywords: Cluster analysis – Dendrogram – Split
decomposition – Principal component analysis –
Similarity matrix

Introduction

Multivariate data often consist of sets of high-dimen-
sional vectors. In chemical applications, a vector could
be a series of physical measurements or calculated
properties made on a molecule. A dataset of com-
pounds may be a series of related molecules collected
for, for example, a structure—activity study. If the
vectors are only two-dimensional, they can be plotted

in a plane. This allows the visual inspection of the
structure of the dataset to identify clusters and partic-
ular objects, i.e., to perform an exploratory data
analysis. When dealing with vectors whose dimensions
are larger than 2, it is not possible to represent them
graphically in a plane. One way to overcome this
problem is to transform the N-dimensional vectors into
two-dimensional ones. Many projection methods have
been developed for this task. A good projection
method preserves as faithfully as possible the original
structure of the high-dimensional data. Unfortunately,
the true distances between the vectors in the original
high-dimensional space cannot be preserved exactly in
the projected two-dimensional display. The two-
dimensional plot thus obtained must distort in some
way the original picture. Such distortions can cause
misleading plots. Among the many papers concerned
with the projection of multivariate data, the checking
of the projections remains mostly an exception.

Projection algorithms can be either supervised or
unsupervised. Because this article deals with exploratory
data structure analysis, only unsupervised methods are
used. Unsupervised algorithms can be either linear (e.g.,
principal component analysis, PCA) or nonlinear (e.g.,
nonlinear mapping, self-organizing map). Comparisons
of the quality of projection methods were described
elsewhere [1, 2, 3, 4, 5, 6].

PCA is probably one of the most popular projection
methods [7]. Its principal feature is to rotate the vector
space using the eigenvectors (principal components, or
factors) of the covariance matrix as a new basis [8].
Principal components corresponding to the two largest
eigenvalues (variance) are used to produce two-dimen-
sional plots [9]. The quality of the projection is com-
monly expressed by the retained variance of the first two
principal components. In addition, plots of other com-
ponents, such as the first against the third, etc., might be
useful. PCA facilitates the statistical analysis, but the
interpretation is obscured, as each new variable results
from the combination of others.
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In order to illustrate the usefulness of this method, a
projection method and a dataset of molecules are stud-
ied. The dataset deals with a series of 31 fullerenes
represented by five structural parameters. For this
example, the PCA projection method is applied. On the
other hand, a method is described for clustering data.
The relative efficiency of clustering algorithms and sim-
ilarity descriptors has been the subject of several recent
articles [10, 11, 12].

Balaban et al. [13] reported extensive computations
of a number of graph invariants for many fullerenes.
Diudea et al. [14] devised a novel way to construct
toroidal fullerenes from square tiled tori. Aihara and
Hirama [15] concluded that antiaromatic species are
scarcely formed in interstellar space. Aihara [16] studied
the spherical aromaticity in charged fullerenes and the
2(N+1)2 rule. Ivanciuc et al. [17] presented a qualitative
resonance-theoretic view for the description of a variety
of conjugated p-network species identified with sub-
graphs of the graphite network [17].

In a previous paper, the calculation of the Kekulé
structure count and the permanent of adjacency matrices
[18] was applied to fullerenes with different structural
parameters involving the presence of contiguous penta-
gons [19]. PCA of the structural parameters was carried
out [20]. In this work, two new structural parameters
have been introduced and PCA has been performed. The
aim of this paper is to analyze the interdependence be-
tween the structural parameters, to classify them, and
to classify the fullerenes. The computational methods
are presented in Sect. 2. The calculation results for
fullerenes are discussed in Sect. 3. The conclusions are
summarized in Sect. 4.

Computational methods

PCA is used to transform a number of potentially correlated
variables into the same number of independent variables, which can
then be ranked on the basis of their contributions for explaining the
whole data set. The transformed variables that can explain all the
information in the data are called principal components or factors.
The first principal component, F1, accounts for as much of the
variability in the data as possible and each succeeding component,
Fi, accounts for as munch of the remaining variability as possible.
Principal components having minor contribution to the data set
may be discarded without losing too much information. If the
number of principal components is less than 4 then the multidi-
mensional data can be graphed in two-dimensional or three-
dimensional space, i.e., PCA can be used to reduce dimensionality.
The main purpose of employing PCA is to reduce the number of
variables (principal components) used in the analysis. PCA creates
new variables as linear combinations of all the initial variables so
that the first principal component contains the largest variance, the
second principal component contains the second largest variance,
and so on, until the last principal component can be truncated.
PCA also allows diminishing the number of total variables in a data
set.

The comparison of the measures of two different variables has
no sense. However, the initial measures can be transformed: the N
values of the jth variable are compared with the mean of this jth
variable. In fact, the transformed value x0ij ¼ xij � �xj

� ��
rj where rj

is the standard deviation of the jth variable. PCA, which consists in
finding the eigenvalues and eigenvectors of the covariance matrix,
produces standardized variables to diagonalize the correlation

matrix of the initial variables. In effect, principal components have
the form Fi ¼

PP
k¼1 Cikx0k . On the (F1, F2) plane, each point (vari-

able) k has as coordinates some numbers proportional to the C1k

and C2k coefficients of the principal components F1 and F2. The
profile of a principal component Fi is the vector of the squared Cik

coefficients C2
i1;C

2
i2; . . . ;C2

iP

� �
. Each C2

ik represents the weight of
variable k in principal component Fi. It gives the fraction of each
variable in principal component Fi.

On the other hand, one approach to the diversity problem is to
cluster a structural database or virtual library on the basis of some
kind of structural criteria. Standard approaches for clustering can
be broken into hierarchical and nonhierarchical. Hierarchical
approaches can be further categorized as agglomerative or divisive.
In a nonhierarchical approach, a nearest-neighbor list is created
and used to assemble members into related clusters [21]. There are
many reasons to cluster a database of molecular structures [22, 23,
24, 25].

A program based on the IMSL [26] subroutine CLINK has
been written to carry out hierarchical cluster analysis from a cor-
relation or similarity matrix. Initially, each data point is considered
to be a cluster, numbered 1 to n=Npt, where Npt is the number of
data points to be clustered. Clustering proceeds in five steps.
Step 0. Set the counter k=1. Step 1. If the data matrix contains
similarities they are converted to distances. Step 2. A search is
made of the distance matrix to find the two closest clusters. These
clusters are merged to form a new cluster, numbered n+k. Step 3.
Based upon the method of clustering, updating of the distance
measure corresponding to the new cluster is performed. Step 4. Set
k=k+1. If k<n, go to step 2. The procedure allows two methods
of computing the distances between clusters. The single and com-
plete methods differ primarily in how the distance matrix is updated
after two clusters have been joined. Suppose in the following dis-
cussion that clusters A and B have just been joined to form clus-
ter Z, and interest is in computing the distance of Z with another
cluster called C (Fig. 1). In the single-linkage method, the distance
from Z to C is the minimum of the distances (A to C, B to C). In
the complete-linkage method, the distance from Z to C is the
maximum of the distances (A to C, B to C). In general, single
linkage will yield long, thin clusters, while complete linkage will
yield clusters that are more spherical.

Calculation results and discussion

The structural features involving adjacent pentagons
are encoded by the p, q and r parameters as illustrated
in Fig. 2. The p and q parameters enumerate, respec-
tively, the number of edges common to two penta-
gons and the number of vertices common to three

Fig. 1. Distance between clusters Z and C

Fig. 2. Substructures that contribute to the p, q and r counts
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pentagons [27]. The r count enumerates the number of
pairs of nonadjacent pentagon edges shared with two
other pentagons [28]. Thus, q and r complement each
other by counting both possible arrangements of three
contiguous pentagons. However, there is a close rela-
tionship between p, q and r, for example, the minimum
structure with q=1 (Fig. 1, q) needs p=3, and the
minimum structure with r=1 (Fig. 1, r) requires p=2.
The interdependence between p, q and r suggests
expanding the set of parameters with the q/p and r/p
quotients.

The values for the structural parameters involving
the presence of contiguous pentagons are given in
Table 1. Much chemical graph-theory work revolved
around the adjacency matrices A. The determinant of
the 3·3 matrix [a b c, d e f, g h i] is aei)ahf)
dbi+dhc+gbf)gec. The permanent of this matrix,
per(A), is the sum of the same six terms. K is the
Kekulé structure count. A motivation for the consid-
eration of K is that K is never zero for fullerenes [29].
As per(A) and K increase exponentially with system
size, several authors used their logarithms. Cash se-
lected a group of 27 fullerenes (included in Table 1) to
correlate ln[per(A)]/lnK, lnK and ln[per(A)]/lnK with p,
q and r. Despite his good results, three important re-
marks were made: (1) parameters p, q and r include
some redundant information; (2) the error of some
parameters is large; (3) nonlinear effects of p, q and r
can affect ln[per(A)]/lnK, lnK or ln[per(A)]/lnK [18].

Therefore, a different strategy was used: (1) smaller
superpositions of p)q and p)r were sought; (2) not all
the three parameters were necessarily retained; (3)
nonlinear correlations were allowed.

The best linear correlation of ln[per(A)]/lnK with {p},
{q}, {r}, the three pairs and {p,q,r} for the fullerenes is

ln per Að Þ½ �=lnK ¼ 2:14� 0:0108qþ 0:00364r
n ¼ 29; R ¼ 0:721; s ¼ 0:036; F ¼ 14:1;

MAPE ¼ 1:21%; AEV ¼ 0:4803
ð1Þ

The mean absolute percentage error (MAPE) is 1.21%
and the approximation error variance (AEV) is 0.4803.
There are degeneracy problems with trying to fit per(A)
and K with the structural invariants p, q and r. Even
with restriction to fullerenes there are numerous cases of
whole families of fullerenes with exactly the same values
of p, q and r, yet with rather widely varying values of
per(A) and K. For instance, fairly large fullerenes surely
almost all have p=q=r=0, although the values for
per(A) and K increase exponentially with N (the number
of sites of the fullerene). As N has not been included in
the correlations, the application of the present fits is
restricted to smaller fullerenes (N<70). As there are
several fullerenes with the same set of p, q and r
parameters, Eq. (1) explains 95% of the correlation
coefficient of the mean (n=24, R=0.757). On the other
hand, the best nonlinear correlation of ln[per(A)]/lnK
with {p}, {q}, {r}, {p,q},....,{p,q,r} is

Table 1. Values of p, q and r
counts for fullerenes Fullerene K per(A) ln[per(A)]/lnK p q r q/p r/p

C20 (Ih) 36 1,392 2.0199 30 20 30 0.6667 1.0000
C24 (D6d) 54 4,692 2.1192 24 12 36 0.5000 1.5000
C26 (D3h) 63 8,553 2.1853 21 8 30 0.3810 1.4286
C28 (Td) 75 15,705 2.2378 18 4 24 0.2222 1.3333
C28 (D2) 90 16,196 2.1540 20 8 24 0.4000 1.2000
C30 (C2v) I 107 29,621 2.2034 17 4 20 0.2353 1.1765
C30 (C2v) II 117 30,053 2.1651 18 6 20 0.3333 1.1111
C30 (D5h) 151 31,945 2.0672 20 10 20 0.5000 1.0000
C32 (D3) 144 55,140 2.1968 15 2 18 0.1333 1.2000
C32 (C2) I 151 55,705 2.1780 16 4 16 0.2500 1.0000
C32 (C2) II 168 57,092 2.1375 17 6 16 0.3529 0.9412
C32 (D2) 184 58,384 2.1045 18 8 15 0.4444 0.8333
C34 (C3v) 195 103,665 2.1902 15 3 15 0.2000 1.0000
C34 (Cs) 196 104,484 2.1896 15 3 16 0.2000 1.0667
C34 (C2) I 204 103,544 2.1714 14 2 14 0.1429 1.0000
C34 (C2) II 212 107,720 2.1632 17 6 16 0.3529 0.9412
C36 (D6h) 272 192,528 2.1706 12 0 12 0.0000 1.0000
C36 (D2d) 288 192,720 2.1489 12 0 12 0.0000 1.0000
C36 (C2v) 312 197,340 2.1231 13 2 10 0.1538 0.7692
C36 (D3h) 364 207,924 2.0764 15 6 6 0.4000 0.4000
C38 (C2v) 360 366,820 2.1768 14 2 14 0.1429 1.0000
C38 (C3v) 378 363,300 2.1572 12 1 9 0.0833 0.7500
C38 (D3h) 456 411,768 2.1116 18 8 18 0.4444 1.0000
C40 (D5d) I 562 515,781 2.0775 10 0 10 0.0000 1.0000
C40 (Td) 576 704,640 2.1185 12 4 0 0.3333 0.0000
C40 (D5d) II 701 803,177 2.0750 20 10 20 0.5000 1.0000
C44 (T) 864 2,478,744 2.1775 12 4 0 0.3333 0.0000
C44 (D3h) 960 2,436,480 2.1416 9 2 0 0.2222 0.0000
C60 (Ih) 12,500 395,974,320 2.0986 0 0 0 – –
C70 (D5h) 52,168 – – 0 0 0 – –
C82 (Cs) – – – 0 0 0 – –
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ln per Að Þ½ �=lnK ¼ 2:13þ 0:0515z41
z41 ¼ 0:225z31 þ 1:20z32
z31 ¼ �1:16þ 0:232q
z32 ¼ 1:05z22 � 0:875z21z22
z21 ¼ 1:22� 0:0983r þ 0:00277qr
z22 ¼ �0:726z11 � 0:921z12
z11 ¼ �1:16þ 0:232q
z12 ¼ 1:22� 0:0983r þ 0:00277qr
MAPE ¼ 0:87%; AEV ¼ 0:2432

ð2Þ

and AEV decreases by 49%. If q/p and r/p are included
in the model the best linear fit is

ln per Að Þ½ �=lnK ¼ 1:88þ 0:0361p � 0:0490q
þ0:00953r þ 0:0497q=p
�0:253r=p

n ¼ 28; R ¼ 0:941; s ¼ 0:019; F ¼ 34:2
MAPE ¼ 0:66%; AEV ¼ 0:1558

ð3Þ

and AEV decreases by 68%. Equation (3) explains
98% of the correlation coefficient of the mean (n=23,
R=0.956). The best nonlinear model does not improve
the results.

There are already powerful exact computational
approaches for K. For arbitrary chemical graphs
enumeration via Heilbronner recursion is feasible
up to about 90 atoms. Better efficiency occurs with
Kasteleyn’s method as applies for all planar graphs
(including all fullerenes). This simply involves the eval-
uation of the determinant of a signed adjacency matrix
A¢ [30], where extension has been made to deal with
conjugated circuits counts, using the inverse of A¢. For
InK alone, the best linear correlation for the first 30
fullerenes in Table 1 is

lnK ¼ 10:1� 0:376p þ 0:255q

n ¼ 30; R ¼ 0:965; s ¼ 0:401; F ¼ 181:6;

MAPE ¼ 4:21%; AEV ¼ 0:0692

ð4Þ

Equation (4) explains 98% of the correlation coeffi-
cient of the mean (n=24, R=0.982). The use of non-
linear models or the inclusion of q/p and r/p does not
improve the results.

For In[per(A)] alone, the best linear correlation for
the fullerenes in Table 1 is

ln per Að Þ½ � ¼ 20:2� 0:660p þ 0:383q

n ¼ 29; R ¼ 0:949; s ¼ 0:757; F ¼ 118:5

MAPE ¼ 4:05%; AEV ¼ 0:0988

ð5Þ

Equation (5) explains 97% of the correlation coeffi-
cient of the mean (n=24, R=0.977). On the other hand,
the best nonlinear correlation is

ln per Að Þ½ � ¼ 20:0� 0:666p þ 0:616q� 0:00850pq

MAPE ¼ 3:91%; AEV ¼ 0:0871
ð6Þ

and AEV decreases by 12% with respect to the linear fit.
The inclusion of q/p and r/p does not improve the re-
sults. Small p)q and p)r superpositions are observed in
Equations (1), (2), (4), (5) and (6). This diminishes the
risk of collinearity [31] in the fits given the close rela-
tionship among p, q and r. The correlation coefficient
between cross-validated representatives and the property
values Rcv has been calculated with the leave-n-out
procedure [32]. The ln[per(A)]/lnK versus {p,q,r,q/p,r/p}
method gives greater Rcv than the ln[per(A)]/lnK versus
{q,r} and ln[per(A)]/lnK versus {p,q,r} methods. Both
lnK and ln[per(A)] versus {p,q} methods give greater Rcv

than the lnK and ln[per(A)] versus {p,q,r} methods. The
corresponding interpretation is that the {p,q,r,q/p,r/p}
set is more predictive than {q,r} or {p,q,r} for ln[per(A)]/
lnK, and that {p,q} is more predictive than {p,q,r} for
both lnK and ln[per(A)].

On the other hand, the upper triangle of the corre-
lation matrix R for {p,q,r,q/p,r/p} is

R ¼

1:000 0:929 0:857 0:805 0:542
1:000 0:635 0:934 0:225

1:000 0:457 0:875
1:000 0:029

1:000

0

BBBB@

1

CCCCA
:

High correlation is obtained between q)q/p, p)q, r)r/
p and p)r. The correlation between the derived q/p and
r/p parameters is 20 times smaller than that between the
primary q and r.

Both single-linkage and complete-linkage hierarchical
cluster analyses allow building the dendrogram for p, q,
r, q/p and r/p of fullerenes [33]. The cluster analysis
performs a binary taxonomy of the structural parame-
ters that separates first r)r/p from p)q)q/p. Further, the
p count is set apart. Finally, q is disconnected from q/p,
and r from r/p. The earliest separation of r (with r/p) is in
agreement with the high value of Rpq. From the cluster
analysis, the radial tree is built for p, q, r, q/p and r/p of
the fullerenes. The radial tree is in agreement with the
dendrogram. On the other hand, the method of split
decomposition takes a distance matrix or a set of clus-
tering data and produces a graph that represents the
relationships between the taxa [34]. For ideal data, this
graph is a tree, whereas less ideal data will give rise to a
treelike network that can be interpreted as possible
evidence for different and conflicting data. Further, as
split decomposition does not attempt to force data onto
a tree, it can provide a good indication of how treelike
given data are. The splits graph for p, q, r, q/p and r/p
reveals that a conflicting relationship exists between p
and parameters q)q/p and r)r/p. This is due to the
interdependence between p, q and r. Therefore, the splits
graph indicates a spurious relationship resulting from
base composition effects. The r)p)q portion of the splits
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graph is in qualitative agreement with a previous study
of the {p,q,r} set, which also indicated a spurious rela-
tionship between p, q and r resulting from base com-
position effects.

PCA for the structural parameters p, q, r, q/p and r/p
results in five factors, which are linear combinations of
p, q, r, q/p and r/p. The coefficients for the factors are
listed in Table 2. The importance of PCA factors F1–F5

for the structural parameters of the fullerenes is collected
in Table 3. In particular, the use of only the first factor
explains 72% of the variance and gives a relative error of
28%. Moreover, the use of the first two factors explains
98% of the variance, reducing the relative error to 2%.
Furthermore, the use of the first three factors explains
99.4% of the variance, reducing the relative error to only
0.6%.

The PCA F2 versus F1 plot for the fullerenes is illus-
trated in Fig. 3. Fullerenes in classes 1, 3, 4 and 5 with
the same set of p, q, r, q/p and r/p values in Table 1
appear superposed in Fig. 3. Five classes are clearly
distinguished: class 1 with seven members (below the
bisector, F1�F2, middle right of Fig. 3), class 2 with
four members (under the bisector, F1>F2>0, top right
of Fig. 3), class 3 with eight members (over the bisector,
F1<F2, top of Fig. 3), class 4 with five members (above
the bisector, F1>F2, top left of Fig. 3) and class 5 with
four members (under the bisector, 0>F1>F2, bottom
left of Fig. 3). In general, fullerenes with the same
number of atoms belong to the same class. The excep-
tions are the isomers of C28, C30, C32, C34, C36, C38 and
C40, which are members of two or three classes. How-
ever, no fullerene has isomers belonging to four or five
classes. With the purpose of classifying C60, C70 and C82,
PCA analysis was repeated with the {p,q,r} set. This
PCA F2 versus F1 plot grouped C60—C82 in class 5, close
to C44 (D3h).

On the other hand, instead of N fullerenes in the <P
space of P parameters, let us consider P structural
parameters in the <N space of N fullerenes. A table with
P rows and N columns was built and the similarity of the
fullerenes was compared. The dendrogram for the
fullerenes matching to p, q, r, q/p and r/p was calculated.
The tree provides a binary taxonomy of the fullerenes in
Table 1, which separates the fullerenes in the same
classes as PCA (Fig. 3). With the purpose of classifying
C60—C82, the dendrogram was repeated for {p,q,r}. The
result was the inclusion of C60–C82 in a new branch
connected to C44 (D3h). The radial tree for the fullerenes
relating to p, q, r, q/p and r/p was calculated. It separates
first the seven fullerenes in class 1, then the four fulle-
renes in class 2, the eight fullerenes in class 3, the five
fullerenes in class 4 and the four fullerenes in class 5.
These classes correspond to those obtained by PCA
(Fig. 3) and the dendrogram. With the purpose of clas-
sifying C60–C82, the radial tree was repeated for {p,q,r}.
The result was the inclusion of C60–C82 in a new branch
connected to C44 (D3h), as shown in Fig. 4.

Conclusions

From the preceding results the following conclusions
can be drawn.

1. The results for the Kekulé structure count and the
permanent of the adjacency matrix of fullerenes are
given for a series of structures up to C60. A great deal
of work remains to be done to characterize the rela-
tionship of the permanent to chemical structure and
properties.

2. Linear and nonlinear correlation models have been
obtained for ln[per(A)]/lnK, lnK and ln[per(A)] of
fullerenes as functions of structural parameters
involving the presence of contiguous pentagons. The
nonlinear regression for ln[per(A)]/lnK has been
improved. The variance decreased by 68%. It has

Table 2. Coefficients for the principal component analysis factors
Fi=ap+bq+cr+dq/p+er/p

Factor a b c d e

F1 0.523 0.480 0.470 0.421 0.314
F2 )0.045 )0.342 0.385 )0.501 0.694
F3 0.389 0.439 )0.010 )0.753 )0.297
F4 )0.141 )0.240 0.779 )0.002 )0.561
F5 0.744 )0.634 )0.154 0.068 )0.130

Table 3. Importance of the principal component analysis factors

Factor Eigenvalue Percentage Accumulated percentage

F1 3.59677680 71.94 71.94
F2 1.31894604 26.37 98.31
F3 0.05633613 1.13 99.44
F4 0.01775178 0.36 99.80
F5 0.01018925 0.20 100.00

Fig. 3. Principal component analysis F2 versus F1 plot for the
fullerenes
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diminished the risk of collinearity. The most predic-
tive set is {p,q,r,q/p,r/p} for ln[per(A)]/lnK, and {p,q}
for both lnK and ln[per(A)].

3. The cluster analysis shows greater similarity for the
p)q parameters than with r. Split decomposition
indicates a spurious relationship resulting from base
composition effects.

4. PCA provides three orthogonal factors. The use of
only F1 gives a relative error of 28%. The use of F1

and F2 decreases the error to 2% and groups the
fullerenes in five classes.

5. The similarity between fullerenes has been compared
with the cluster analysis of these molecules. The
cluster analysis is in agreement with PCA classifica-
tion.
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